Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1342388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317864

RESUMO

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

2.
Nutrients ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140315

RESUMO

Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Cricetinae , Animais , Humanos , Hipercolesterolemia/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Polifenóis/metabolismo , Células CACO-2 , Mesocricetus , Colesterol/metabolismo , Hiperlipidemias/metabolismo , Triglicerídeos/metabolismo , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fígado/metabolismo
3.
Nutr Res ; 118: 70-84, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598559

RESUMO

Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.


Assuntos
Diabetes Mellitus Tipo 2 , Extratos Vegetais , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Aumento de Peso , Peso Corporal , Triglicerídeos/metabolismo , Nutrientes , Carboidratos , Camundongos Endogâmicos C57BL
4.
Nutrients ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111121

RESUMO

TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (-32% after 6 weeks; -20.3% after 12 weeks) and non-HDL cholesterol levels (-21% after 6 weeks; -38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (-41%, p < 0.001) and (3) cholesterol (-50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity -44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.


Assuntos
Metabolismo dos Lipídeos , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Hepatócitos , Colesterol , Triglicerídeos , Dieta Hiperlipídica , Fígado/metabolismo
5.
Hepatology ; 63(5): 1660-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26473496

RESUMO

UNLABELLED: Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. CONCLUSION: The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Regeneração Hepática , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Hepatócitos/patologia , Hiperplasia , Metabolismo dos Lipídeos , Masculino , Camundongos , Transdução de Sinais/fisiologia
6.
Atherosclerosis ; 243(2): 499-509, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26520906

RESUMO

RATIONALE: Recently, there has been significant interest in the therapeutic administration of miRNA mimics and inhibitors to treat cardiovascular disease. In particular, miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism and potential therapeutic target for treating atherosclerosis. Despite this, the impact of miR-27b on lipid levels in vivo remains to be determined. As such, here we set out to further characterize the role of miR-27b in regulating cholesterol metabolism in vitro and to determine the effect of miR-27b overexpression and inhibition on circulating and hepatic lipids in mice. METHODS AND RESULTS: Our results identify miR-27b as an important regulator of LDLR activity in human and mouse hepatic cells through direct targeting of LDLR and LDLRAP1. In addition, we report that modulation of miR-27b expression affects ABCA1 protein levels and cellular cholesterol efflux to ApoA1 in human hepatic Huh7 cells. Overexpression of pre-miR-27b in the livers of wild-type mice using AAV8 vectors increased pre-miR-27b levels 50-fold and reduced hepatic ABCA1 and LDLR expression by 50% and 20%, respectively, without changing circulating and hepatic cholesterol and triglycerides. To determine the effect of endogenous miR-27b on circulating lipids, wild-type mice were fed a Western diet for one month and injected with 5 mg/kg of LNA control or LNA anti-miR-27b oligonucleotides. Following two weeks of treatment, the expression of ABCA1 and LDLR were increased by 10-20% in the liver, demonstrating effective inhibition of miR-27b function. Intriguingly, no differences in circulating and hepatic lipids were observed between treatment groups. CONCLUSIONS: The results presented here provide evidence that short-term modulation of miR-27b expression in wild-type mice regulates hepatic LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Fígado/metabolismo , MicroRNAs/metabolismo , Receptores de LDL/metabolismo , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/sangue , Células COS , Chlorocebus aethiops , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Receptores de LDL/genética , Fatores de Tempo , Transfecção , Triglicerídeos/sangue
7.
Hepatology ; 61(4): 1227-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25418138

RESUMO

UNLABELLED: The cell death-inducing DNA fragmentation factor alpha-like effector c (CIDEC; also known in rodents as FSP27 or fat-specific protein 27) is a lipid droplet-associated protein that promotes intracellular triglyceride (TAG) storage. CIDEC/Fsp27 is highly expressed in adipose tissue, but undetectable in normal liver. However, its hepatic expression rises during fasting or under genetic or diet-induced hepatosteatosis in both mice and patients. Herein, we demonstrate that CIDEC/Fsp27 is a direct transcriptional target of the nuclear receptor PPARα (peroxisome proliferator-activated receptor alpha) in both mouse and human hepatocytes, and that preventing Fsp27 induction accelerates PPARα-stimulated fatty acid oxidation. We show that adenoviral-mediated silencing of hepatic Fsp27 abolishes fasting-induced liver steatosis in the absence of changes in plasma lipids. Finally, we report that anti-Fsp27 short hairpin RNA and PPARα agonists synergize to ameliorate hepatosteatosis in mice fed a high fat diet. CONCLUSIONS: Together, our data highlight the physiological importance of CIDEC/Fsp27 in TAG homeostasis under both physiological and pathological liver steatosis. Our results also suggest that patients taking fibrates likely have elevated levels of hepatic CIDEC, which may limit the efficient mobilization and catabolism of hepatic TAGs.


Assuntos
Fígado Gorduroso/etiologia , PPAR alfa/fisiologia , Proteínas/fisiologia , Animais , Células Cultivadas , Dieta , Jejum , Hepatócitos , Humanos , Fígado , Camundongos
8.
J Lipid Res ; 54(9): 2475-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23772048

RESUMO

Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.


Assuntos
Álcool Desidrogenase/metabolismo , Ácido Quenodesoxicólico/farmacologia , Álcool Desidrogenase/genética , Álcoois/metabolismo , Animais , Sequência de Bases , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Isoxazóis/farmacologia , Ligantes , Masculino , Camundongos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos
9.
Biochem Biophys Res Commun ; 434(1): 102-9, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23541942

RESUMO

Here we report that bile acid chenodeoxycholic acid (CDCA) and synthetic farnesoid X receptor (FXR) agonist GW4064 robustly induced tumor suppressor N-Myc downstream regulated gene 2 (NDRG2) expression in human hepatoma cells and primary hepatocytes. Knockdown of FXR abolished the induction by CDCA, whereas overexpression of a constitutively active form of FXR increased NDRG2 expression. A FXR-response element was identified within intronic regions of human and murine genes. Moreover, mice given GW4064 exhibit an increase of Ndrg2 expression in liver and kidney, where both NDRG2 and FXR are enriched. The identification of NDRG2 as a bile acid regulated gene may provide novel knowledge toward the understanding of NDRG2 physiological function and the link between metabolism and cancer.


Assuntos
Ácidos e Sais Biliares/farmacologia , Proteínas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/fisiologia
10.
Med Sci (Paris) ; 26(4): 385-90, 2010 Apr.
Artigo em Francês | MEDLINE | ID: mdl-20412743

RESUMO

Type 2 diabetes (T2D) frequently occurs in the context of a dysregulation of plasma lipoproteins with an increased triglyceride content in pancreatic beta cells, leading to lipotoxicity and subsequent cell death. More recently, accumulating data suggest that cholesterol homeostasis is a major regulator of beta cell function. Intra-cellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion. The role of essential cholesterol modulators like the ATP-binding cassette transporter A1 or the LDL receptor has emerged in regulating insulin secretion in beta cells. Intracellular cholesterol impacts both the beta-cell membrane organization in microdomains as well as the dynamic regulation of glucose-induced insulin secretion. There is also evidence suggesting that the different lipoprotein classes have varying effects on beta cell apoptosis and proliferation. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D.


Assuntos
Colesterol/metabolismo , Ilhotas Pancreáticas/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Apoptose , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/fisiopatologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Lipídeos de Membrana/metabolismo , Síndrome Metabólica/metabolismo , Camundongos , Modelos Biológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Receptores de LDL/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia
11.
J Biol Chem ; 283(15): 9666-73, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18245819

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with familial autosomal dominant hypercholesterolemia and is a natural inhibitor of the LDL receptor (LDLr). PCSK9 is degraded by other proprotein convertases: PC5/6A and furin. Both PCSK9 and the LDLr are up-regulated by the hypocholesterolemic statins. Thus, inhibitors or repressors of PCSK9 should amplify their beneficial effects. In the present study, we showed that PPARalpha activation counteracts PCSK9 induction by statins by repressing PCSK9 promoter activity and by increasing PC5/6A and furin expression. Quantification of mRNA and protein levels showed that various fibrates decreased PCSK9 and increased PC5/6A and furin expression. Fenofibric acid (FA) reduced PCSK9 protein content in immortalized human hepatocytes (IHH) as well as its cellular secretion. FA suppressed PCSK9 induction by statins or by the liver X receptor agonist TO901317. PCSK9 repression is occurring at the promoter level. We showed that PC5/6A and furin fibrate-mediated up-regulation is PPARalpha-dependent. As a functional test, we observed that FA increased by 30% the effect of pravastatin on the LDLr activity in vitro. In conclusion, fibrates simultaneously decreased PCSK9 expression while increasing PC5/6A and furin expression, indicating a broad action of PPARalpha activation in proprotein convertase-mediated lipid homeostasis. Moreover, this study validates the functional relevance of a combined therapy associating PCSK9 repressors and statins.


Assuntos
Anticolesterolemiantes/farmacologia , Ácido Clofíbrico/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , PPAR alfa/metabolismo , Serina Endopeptidases/biossíntese , Anticolesterolemiantes/uso terapêutico , Linhagem Celular Tumoral , Ácido Clofíbrico/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Fenofibrato/análogos & derivados , Fenofibrato/farmacologia , Furina/biossíntese , Furina/genética , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Hidrocarbonetos Fluorados , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/enzimologia , Hiperlipoproteinemia Tipo II/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Receptores X do Fígado , Receptores Nucleares Órfãos , PPAR alfa/genética , Pravastatina/farmacologia , Pravastatina/uso terapêutico , Regiões Promotoras Genéticas/genética , Pró-Proteína Convertase 5/biossíntese , Pró-Proteína Convertase 5/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA